







#### **National Goals for I&M Program**

- 1. <u>Determine the status and trends in selected indicators</u> of the condition of park ecosystems to allow managers to make better-informed decisions and to work more effectively with other agencies and individuals for the benefit of park resources.
- 2. <u>Provide early warning of abnormal conditions of selected resources</u> to help develop effective mitigation measures and reduce costs of management.
- 3. <u>Provide data to better understand the dynamic nature and condition</u>
  <u>of park ecosystems</u> and to provide reference points for comparisons with other, altered environments.
- 4. <u>Provide data to meet certain legal and Congressional mandates</u> related to natural resource protection and visitor enjoyment (e.g. the Clean Water Act).
- 5. Provide a means of measuring progress towards performance goals.











# Central Alaska Network Stream Monitoring Program Objectives

- 1. Determine decadal-scale trends in chemical and biological measures of water quality.
- 2. Determine decadal-scale trends in the composition and spatial distribution of aquatic macroinvertebrates and diatoms.
- 3. Develop cost-effective and tractable methods to monitor changes in the distribution of anadromous and resident fish species.
- 4. Determine decadal-scale trends in annual and seasonal flow patterns in selected streams and rivers.
- 5. Develop bioassessment tools for park managers to assess water quality in selected rivers and streams.











#### Water quality issues in the Central Alaska Network

#### **Climate change**

- Increased air temperature
- Increased fire frequency and intensity
- Degradation of permafrost
- Receding glaciers
- Changing ppt/water balance
- Landcover changes

#### **Airborne contaminants**

- Mercury
- Pesticides

#### **Resource extraction**

- Legacy mining impacts
- Active mining claims
- Logging

#### Infrastructure development

- Extensive inholdings





















#### Overview of the Central Alaska Network

Almost 90,000 km² (about the same size as Indiana)
26% of all National Park Service land
33% of all stream length in the National Park system (45,000 km)
80% as large as all parklands in the lower 48 states combined
Spans 13 ecoregions over 425,000 km² (size of California)
Elevation range from sea level to 6200 meters

Total of 3 dirt roads (~190 miles)

No currently active stream gages

Baseline/historical physical, biological and chemical data are sparse

Hydrography data (NHD) are outdated and inaccurate

Staff = 1, budget = \$50,000/year

In other words, it's a big challenge!

Collaboration and cooperation will be critical





#### Overview of RIVPACS (O/E) bioassessment

- 1. Collect biological, environmental data from large # of unimpaired (reference) sites
- 2. Define biological groups (cluster analysis)
- 3. Use environmental data to construct discriminant model (LDA, random forests)
- 4. Use discriminant model to calculate probabilities of group membership
- 5. Use probabilities of group membership, distribution of taxa to calculate expected taxa composition at each site (E)
- 6. Compare # of expected taxa actually observed (O) to expected (E)
- 7. Use distribution of reference site O/E scores to evaluate model and define thresholds of impairment











#### **RIVPACS** model for the Central Alaska Network

- 80 reference sites, 150 unique taxa
- Mean taxa richness = 19
- Eliminate low-richness/abundance outliers (glacial rivers, intermittent streams)
- 68 sites used to build model, mean taxa richness = 21
- Eliminate rare taxa for clustering (60% of taxa found at < 10% of sites)
- Identified 6 biologically significant groups
- Use only GIS-derived environmental predictors











#### Random forests discriminant model

#### **Globally important predictors**

Watershed Area
Watershed Perimeter

Annual Max. Temperature

July Max. Temperature

Annual Min. Temperature

**CV Slope** 

Minimum Elevation

Percent Evergreen Forest

Percent Lakes

Percent Wetlands











#### Distribution of reference site O/E scores

Mean O/E= 1.04 SD = 0.17 (SD of null model = 0.23)





















## **Next Steps**

Use data from reference sites that are sampled annually to

- estimate variance
- estimate power to detect change in O/E

Include diatom data – separate and combined models



Use models to detect climate change effects?

- Calibrate model using data from limited time period (e.g., 2004-2010)
  - define as baseline condition
- Apply model to sites that are sampled infrequently (GRTS sites)
  - most of these will be reference-quality sites
  - allows change detection at sites sampled for the first time
  - allows estimates of average change over the landscape

#### Foster collaboration/cooperation with other agencies

- ADEC, USFWS, USGS







